# Integrated PVT Solutions

Power, Heat & Water from the Sun







**Company Address:** 20 linzbou North Road, linsban

20 Jinzhou North Road, Jinshan Industrial Park, Cangshan District, Fuzhou, Fujian, China

Official Website: www.ceepowerglobal.com

Email: global@ceepower.com

Whatsapp: +1 (626) 298-9924



**Official Website** 



EU Service Center (Contact Jason on Whatsapp)





## **PVT (Photovoltaic-Thermal) Technology**

#### **Working Principle**

• Temperature effect is a key factor limiting photovoltaic system efficiency. For monocrystalline silicon cells, every 1°C rise in temperature reduces power output by approximately 0.30%.

• PVT(Photovoltaic-Thermal) modules integrate photovoltaic and thermal functions. Shortwave solar radiation is converted into electricity by PV cells, while longwave radiation serves as a low-temperature heat source for heat pumps — enabling dual utilization of solar energy: electrical and thermal.

#### Workflow Diagram



Direct Expansion / Air Source Heat Pump (DX / ASHP)

#### **Technical Features**

Space-Saving

> Generates both electricity and heat in limited roof space, avoiding the need for separate PV and solar thermal systems and reducing rooftop resource waste.

#### **Improved PV Efficiency**

Under good sunlight conditions, PV panels tend to overheat. A heat pump circulation system helps lower panel temperature, increasing power generation efficiency by over 10%.



#### **Multifunctional Integration**

Integrates photovoltaic, solar thermal, and other renewable technologies to simultaneously meet electricity, hot water, and heating demands.



#### **High Energy Efficiency**

Based on air-source heat pump technology, using PVT modules as external evaporators can increase the system's COP (Coefficient of Performance) by 20-50% compared to standard air-source heat pumps.

### **Application of PVT Solar Heat Pump Systems**

• The ultimate goal of renewable energy development is to continuously improve the level of electrification.

• Future buildings (including households) will adopt energy microgrid systems, integrating technologies such as photovoltaics, solar thermal, heat pumps, and energy storage (both electricity and heat), along with direct current applications — to achieve source-grid-load-storage integration.





Passive PVT (Photovoltaic-Thermal) Integrated Module Uses working fluid (antifreeze or water) circulation for natural heat exchange, collecting and transferring solar thermal energy.





#### Active PVT (Photovoltaic-Thermal) Integrated Module

Utilizes refrigerant circulation in a heat pump system to extract solar and ambient energy, functioning as an external evaporator for the heat pump.

02

## **Active PVT Integrated Module Specifications**

| Module Model | Total Power | Electrical Power | Thermal Power |
|--------------|-------------|------------------|---------------|
| SPVT-N10/50  | 1600W       | 400W             | 1200W         |



#### **Excellent Heat Dissipation**

Operates 10–20°C lower than conventional PV modules.

#### 🚹 High Reliability





#### 24/7 Thermal Supply

Provides domestic hot water or heating in all weather conditions.



En Z

(\$)

Flexible Configuration Scalable module quantity based on heating



#### Multidimensional Utilization

Full-spectrum use: front-side power generation, rear-side heat collection.

#### Compact & Powerful

Small footprint, lightweight design, high energy output.



#### **Application Feature**

While generating electricity, the system simultaneously circulates heat pump working fluid (refrigerant) to transfer solar thermal energy to the heat pump, functioning as an external evaporator.

#### Curve Characteristics Diagram

I-V Curves at Different Temperatures (395W)



P VMP (V) IMP (A) VOC ISC ( Photor Photot

STC\*: Irradiance = 1000 W/m<sup>2</sup>, Cell Temperature = 25°C, AM = 1.5

#### I-V / P-V Curves at Different Irradiance Levels (395W)



\_\_\_\_\_

#### Application Specifications

| Parameter              | Value                      |
|------------------------|----------------------------|
| Maximum System Voltage | DC1500V                    |
| Operating Temperature  | -40~+85°C                  |
| Maximum Fuse Current   | 25A                        |
| Safety Class           | Class II                   |
| Static Load            | Wind/Snow Load 2400/5400Pa |
| Heat Exchange Area     | 3.7m <sup>2</sup>          |
| Heat Transfer Medium   | R410A or R290              |
| Operating Pressure     | < 6.0MPa                   |
| Heat Exchange Port     | 3/8 Inch External Thread   |

Disclaimer: This product's single page is as comprehensive and detailed as possible based on the existing materials. The company reserves the right to modify data, parameters, and other information. The final interpretation right belongs to Ceepower and its subsidiaries.

#### **Power Output Warranty:**

#### 12-Year Material & Workmanship Warranty 25-Year Linear Power Output Warranty

IEC 61215 & IEC 61730

ISO 9001: Quality Management System ISO 14001: Environmental Management System ISO 14064: Greenhouse Gas Emissions ISO 45001: Occupational Health and Safety Management System

Note: Certification requirements may vary by country or region. For specific certificates applicable to local markets, please contact us.





#### Performance Parameters (STC\*)

| Parameter                      | 390W Module | 395W Module | 400W Module |
|--------------------------------|-------------|-------------|-------------|
| PAMX (W) - Max Power           | 390         | 395         | 400         |
| ) - Voltage at Max Power Point | 30.1        | 30.3        | 30.55       |
| - Current at Max Power Point   | 13          | 13.04       | 13.1        |
| : (V) - Open-Circuit Voltage   | 34.95       | 35.05       | 35.2        |
| (A) - Short-Circuit Current    | 13.61       | 13.65       | 13.71       |
| voltaic Conversion Efficiency  | 0.2104      | 0.2131      | 0.2158      |
| hermal Conversion Efficiency   | 0.6312      | 0.6393      | 0.6474      |

#### Temperature Coefficients

| Parameter                           | Value       |
|-------------------------------------|-------------|
| Open-Circuit Voltage (Voc)          | -0.24% / °C |
| Short-Circuit Current (Isc)         | +0.04% / °C |
| Maximum Power (Pmax)                | –0.29% / °C |
| ominal Operating Temperature (NOCT) | 43 ± 2°C    |

#### Mechanical Specifications

| Parameter         | Value                            |  |
|-------------------|----------------------------------|--|
| Cell Type         | N-type Topcon 182mm              |  |
| Module Dimensions | 1937 × 957 × 35 mm               |  |
| Weight            | 33 kg                            |  |
| Front Panel       | Glass                            |  |
| Back Panel        | Aluminum Alloy                   |  |
| Frame             | PPO Composite Material           |  |
| Junction Box      | IP68, 3 Diode Tubes              |  |
| Output Cable      | 4 mm <sup>2</sup> , 300 mm Cable |  |
| Connector         | MC4 Compatible                   |  |

## **Integrated PVT Heat Pump Water Heater**

#### **Product Composition**





By using solar energy as the heat source for the heat pump water heater, combined with energy storage and battery storage functions, the system can achieve over 440 kWh of annual power generation (depending on local solar irradiation). Based on a daily hot water usage of 100L, the annual energy savings can reach 377 kWh.

In comparison with traditional electric heating systems (which consume approximately 1697 kWh/year), this solution delivers a net electricity gain of 1320 kWh, resulting in a total annual energy benefit of 1760 kWh.

-2000

Electricity

### **Specifications**



| Parameter                             | Unit  | SPKRS002/01-150 I |
|---------------------------------------|-------|-------------------|
| PVT Power Rating                      | W     | 400-1200          |
| Number of PVT Units                   | pcs   | 45293             |
| Power Supply Specification            | V/Hz  | 220/50            |
| Rated Heating Capacity                | W     | 960-3500          |
| Rated Input Power                     | W     | 350-500           |
| COP (Coefficient of Performance)      | W/W   | 7                 |
| Max Water Output                      | L/h   | 70                |
| Max Input Power                       | W     | 2500              |
| Max Input Current                     | А     | 11.4              |
| Max Water Outlet Temperature          | А     | 60°C              |
| Ingress Protection Rating             |       | IPX4              |
| Electric Shock Protection Class       |       | Class I           |
| Max Working Pressure (Heat Exchanger) | MPa   | 2.8               |
| Max Pressure (Discharge/Suction)      | MPa   | 2.8 / 0.7         |
| Max Allowable Pressure (High/Low)     | MPa   | 2.8 / 0.7         |
| Inlet/Outlet Pipe Size                | DN    | 15                |
| Pipe Connection Spec                  | mm    | 9.52 × 6.35       |
| Dimensions                            | mm    | φ510 × 1820       |
| Net/Gross Weight                      | kg    | 70 / 84           |
| Noise Level                           | dB(A) | < 38              |
| Operating Temperature Range           | °C    | -15°C ~ 40°C      |

### **Application Scenarios**

Suitable for residential houses and villas — installation in courtyards, rooftops, or open balconies. Meets daily domestic hot water needs for an entire household.



Courtyard Installation

Rooftop Installation

Open Balcony Installation

Disclaimer: This product's single page is as comprehensive and detailed as possible based on the existing materials. The company reserves the right to modify data, parameters, and other information. The final interpretation right belongs to Ceepower and its subsidiaries.









#### One-Time Investment, Free Hot Water for Life!

## **Split-Type PVT Heat Pump Water Heater**

#### **Product Composition**



### **Application Scenarios**

• For residential and villa rooftops, the system can be flexibly configured and installed based on household size and daily water usage.

• In limited rooftop space, it enables both power generation and domestic hot water supply, avoiding the need for separate PV and solar water heater installations — thus preventing rooftop resource waste.





#### **Specifications**



| Model                                        | PVTFXRS-1.45IABP           |
|----------------------------------------------|----------------------------|
| Heating Capacity (W)                         | 1450                       |
| Average Input Power (W)                      | 200                        |
| Hot Water Production (L/h)                   | 31.2                       |
| COP (W/W) (W/W)                              | 7.25                       |
| Auxiliary Heating Power (W)                  | 2000                       |
| Max Input Power (W)                          | 2300                       |
| Max Input Current (A)                        | 11                         |
| Max Water Outlet Temperature (C)             | 70                         |
| Noise Level (dB(A))                          | 40                         |
| Power Supply                                 | 220V/1N~50Hz               |
| Refrigerant Type                             | R290                       |
| Expansion Valve Type                         | Electronic Expansion Valve |
| Circulating Water Flow (L/h)                 | 249                        |
| Allowable Pressure Loss (Outside Unit) (kPa) | 40                         |
| Water Pipe Size (Inlet/Outlet) (mm)          | 2 x DN20                   |
| Water Pipe Connection Type                   | Internal Thread            |
| Water Side Pressure Test (MPa)               | ≤2.0                       |
| Liquid Pipe Size (mm)                        | 6.35                       |
| Liquid Pipe Connection Type                  | Flared Connection          |
| Gas Pipe Size (mm)                           | 9.52                       |
| Gas Pipe Connection Type                     | Flared Connection          |
| Length (mm)                                  | 585                        |
| Width (mm)                                   | 428                        |
| Height (mm)                                  | 389                        |
| Net Weight (kg)                              | 33                         |

Test conditions: Steam temperature 20°C, initial water temperature 15°C, final water temperature 55°C.

Disclaimer: This product's single page is as comprehensive and detailed as possible based on the existing materials. The company reserves the right to modify data, parameters, and other information. The final interpretation right belongs to Ceepower and its subsidiaries.







## **PVT Modular Heat Pump Heating System**

Annual Power Generation > Heat Pump Power Consumption

### Key Factors in Designing a Building Heating Plan



#### **Reference Configuration**



1. This table is based on the climate and solar radiation conditions of Munich, Germany. 2. Our company is capable of providing customized heating system designs for different regional climates and building types.

The diagram is for reference only. Actual projects should be based on specific design requirements.

Disclaimer: This product's single page is as comprehensive and detailed as possible based on the existing materials. The company reserves the right to modify data, parameters, and other information. The final interpretation right belongs to Ceepower and its subsidiaries.





| System Configuration                                                                                                |
|---------------------------------------------------------------------------------------------------------------------|
| ls + 1 set of 3P unit 290 + hydraulic module<br>pump, 1 constant pressure tank, valve group,<br>pipes, fittings)    |
| els + 1 set of 5P unit 290 + hydraulic module<br>pump, 1 constant pressure tank, valve group,<br>pipes, fittings)   |
| ls + 2 sets of 3P unit 290 + hydraulic module<br>pumps, 1 constant pressure tank, valve group,<br>pipes, fittings)  |
| ls + 2 sets of 5P unit 290 + hydraulic module<br>pumps, 1 constant pressure tank, valve group,<br>pipes, fittings)  |
| els + 3 sets of 5P unit 290 + hydraulic module<br>pumps, 1 constant pressure tank, valve group,<br>pipes, fittings) |